Table of Content

General Safety & Care Information ... 1
 1.1 Who Can Use This Equipment ... 1
 1.2 Work-site Safety .. 1
 1.3 Equipment Safety .. 1
 1.4 Batteries and Environmental Safety ... 1
 1.4.1 Alkaline Batteries (Non Rechargeable) ... 1
 1.4.2 General Rules Regarding Disposal of Batteries 1
 1.5 Care of Equipment .. 2
 1.6 Care When Interpreting the Information Provided by the Locator 2
 1.7 American & Canadian Safety Notices .. 2
Service & Support ... 4
 2.1 Serial Number and Software Revision Number 4
 2.2 Distributors and Service Centers Closest to You 5
Introduction ... 6
 3.1 VM-480B .. 6
 3.2 Controls and Indicators of the Model VM-480B Transmitter 7
 3.3 Controls and Indicators of the VM-480B Receiver 8
Checkout Procedure .. 9
 4.1 To Check the 50/60Hz Power Mode ... 9
Operation .. 10
 5.1 To Start Locating .. 10
 5.2 Direct (Conductive) Connection ... 11
 5.2.1 Transmitter .. 11
 5.2.2 Peak Method ... 12
 5.2.3 Null Method ... 12
 5.3 Inductive Coupling with the 4820 Metroclamp 13
 5.4 Inductive (Indirect Method) .. 13
 5.5 VM-480B 50/60Hz Power Line Locating ... 14
 5.6 Estimating the Depth of a Conductor ... 15
 5.7 Using the Carrying Handle for Blind Searching, Ground Surveys, and Metal Mass Location 16
 5.7.1 Mounting the VM-480B Transmitter and Receiver to the Carrying Handle ... 16
 5.7.2 Locating with the Handle-Mounted VM-480B 17
 5.7.3 Blind Search, Metal Mass Location, Ground Survey with the Carrying Handle ... 18
 5.8 Conductor Identification Using a Second 4820 Metroclamp 18
 5.9 Marking the Conductor ... 19
Tracing Factors and Helpful Information ... 20
 6.1 Soil Conditions .. 20
 6.2 Field Strength of the Signal ... 20
 6.3 Verifying Versus Tracing ... 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Adjacent Conductors</td>
</tr>
<tr>
<td>6.5</td>
<td>Deep Conductor</td>
</tr>
<tr>
<td>6.6</td>
<td>Tracing Long Runs</td>
</tr>
<tr>
<td>6.7</td>
<td>Locating a Service Lateral - Active Range/Inductive Mode</td>
</tr>
<tr>
<td>6.8</td>
<td>Locating a Bend or Dead End</td>
</tr>
<tr>
<td>6.9</td>
<td>Valves, Manhole Covers, Tees and Risers</td>
</tr>
<tr>
<td>6.10</td>
<td>Common Bonded Conductors</td>
</tr>
<tr>
<td>6.11</td>
<td>Congested Areas</td>
</tr>
<tr>
<td>6.12</td>
<td>Pipes with Insulated Junctions</td>
</tr>
<tr>
<td>6.13</td>
<td>Metroclamp Ground Requirements</td>
</tr>
<tr>
<td>6.14</td>
<td>Grounding Safety</td>
</tr>
<tr>
<td>6.15</td>
<td>Distribution Systems</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
</tr>
<tr>
<td>7.1</td>
<td>Checking and Replacing the VM-480B Transmitter and Receiver Batteries</td>
</tr>
<tr>
<td>7.2</td>
<td>Basic Preventive Maintenance</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
</tr>
</tbody>
</table>
1.1 **Who Can Use This Equipment**
- This equipment must only be used by people suitably trained in the use of pipe and cable locators.

1.2 **Work-site Safety**
- Use your companies, or other applicable safety code and rules when using this equipment.
- Unless having the required authorization, license and appropriate training – do NOT make connections to any pipe, cable or conductor.
- The equipment should not come in contact with corrosive or hazardous chemicals, or gases, dust.
- Do NOT directly connect this equipment to cables or pipes that have a potential difference to ground of greater than 25V AC.

1.3 **Equipment Safety**
- Do NOT open the enclosures (housings) of either the transmitter or receiver.
- Place the ground stake firmly in the ground before connecting the cable from the transmitter.
- Do NOT hold any uninsulated portion of the connection leads & clips when the transmitter is switched on.

1.4 **Batteries and Environmental Safety**
Vivax-Metrotech products use four types of batteries:
- Alkaline batteries

1.4.1 **Alkaline Batteries (Non Rechargeable)**
- When replacing the alkaline batteries – use only the size and type specified – do NOT mix battery types (rechargeable and alkaline).
- Do NOT mix partially discharged and fully charged cells in the same battery pack – do NOT mix old with new.
- Never attempt to charge alkaline batteries.

1.4.2 **General Rules Regarding Disposal of Batteries**
- NEVER disassemble a battery, or battery pack.
- Never dispose of in a fire or water.
- Dispose of batteries in accordance with your Company’s work practice/environmental standards, the prevailing laws, or recognized best practice. Always dispose of batteries responsibly.
1.5 Care of Equipment
• Use equipment only as directed in this User Handbook.
• Do NOT immerse any part of this equipment in water.
• Store in a dry place.
• Keep equipment in the case provided when not in use.
• If left for prolonged period of time – remove alkaline batteries.
• Keep unit clean and free of dust and dirt.
• Protect against excessive heat.

1.6 Care When Interpreting the Information Provided by the Locator
• Like all locators – this instrument is locating, and providing depth and current readings based on electromagnetic signals that radiate from the buried cable or pipe. In most cases these signals will enable the locator to pinpoint both position depth and current correctly.
• BEWARE – in some cases other factors will distort electromagnetic fields radiating from cable or pipe being located, resulting in incorrect information.
• Always locate responsibly, and use information learned during your training to interpret the information provided by the locator.
• Do NOT provide information regarding depth of cable or pipe to anyone unless authorized to do so by your company.
• REMEMBER that depth measurements are to the center of the electromagnetic field or pipe – in the case of pipes this may be significantly deeper than the top of the pipe.

1.7 American & Canadian Safety Notices
USA
• This transmitter and receiver comply with the general conditions of operation, pursuant to part 15 of the FCC Rules.
 • CFR 47 Part 15
• Changes or modifications not expressly approved by the manufacturer could void the user’s authority to operate the products.

CANADA
• Equipment is for use by trained operators only, and not for general household or consumer use.
• Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference that may cause undesired operation of the device.
EUROPE

- Vivax-Metrotech confirms that the location system is compliant with relevant provision of European directive 1999/5/EC.
 - EN 55011
 - EN 61000-4-2: A1 & A2
 - EN 61000-4-3
 - EN 61000-4-8: A1
2.1 **Serial Number and Software Revision Number**
Always quote your receiver and transmitter model number, serial number and software revision number when requesting product support. They can be found as follows: (for reference only)

![Image of receiver](image)

NOTE
The transmitter Model & Serial Number can be found on the receiver.
2.2 Distributors and Service Centers Closest to You:

<table>
<thead>
<tr>
<th>World Headquarters, United State of America</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivax-Metrotech Corporation</td>
<td>ALLFIND Ltd.</td>
</tr>
<tr>
<td>3251 Olcott Street,</td>
<td>No. 780, Tianshan Rd,</td>
</tr>
<tr>
<td>Santa Clara, CA 95054, USA</td>
<td>Shanghai, China 200051</td>
</tr>
<tr>
<td>Website : www.vivax-metrotech.com</td>
<td>T/Free : 4006-288-062</td>
</tr>
<tr>
<td>Sales & Sales Support:</td>
<td>Tel : +86-21-5101-2862</td>
</tr>
<tr>
<td>T/Free : 800-446-3392</td>
<td>Fax : +86-21-5235-8365</td>
</tr>
<tr>
<td>Tel : +1-408-734-1400</td>
<td>Website : www.allfind.com.cn</td>
</tr>
<tr>
<td>Fax : +1-408-734-1415</td>
<td>Email : info@allfind.com.cn</td>
</tr>
<tr>
<td>Email : sales@vxmt.com</td>
<td></td>
</tr>
<tr>
<td>Service & Repairs:</td>
<td></td>
</tr>
<tr>
<td>T/Free : 800-638-7682</td>
<td></td>
</tr>
<tr>
<td>Tel : +1-408-962-9990</td>
<td></td>
</tr>
<tr>
<td>Fax : +1-408-734-1799</td>
<td></td>
</tr>
<tr>
<td>Email : service@vxmt.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Australasia</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivax-Metrotech AUS</td>
<td>SebaKMT</td>
</tr>
<tr>
<td>Unit 1, 176 South Creek Road,</td>
<td>Seba Dynatronic</td>
</tr>
<tr>
<td>Cromer NSW 2099, Australia</td>
<td>Mess-und Ortungstechnik GmbH</td>
</tr>
<tr>
<td></td>
<td>Dr.-Herbert-Iann-Str. 6,</td>
</tr>
<tr>
<td></td>
<td>96148 Baunach, Germany</td>
</tr>
<tr>
<td>Tel : +61-2-9972-9244</td>
<td>Tel : +49-9544-680</td>
</tr>
<tr>
<td>Fax : +61-2-9972-9433</td>
<td>Fax : +49-9544-2273</td>
</tr>
<tr>
<td>Website : www.vivax-metrotechaus.com</td>
<td>Website : www.sebakmt.com</td>
</tr>
<tr>
<td>Email : sales@vxmtaus.com</td>
<td>Email : service@sebakmt.com</td>
</tr>
<tr>
<td>Email : service@vxmtaus.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canada</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivax Canada Inc.</td>
<td>Vivax-Metrotech SAS</td>
</tr>
<tr>
<td>41 Courtland Ave Unit 6,</td>
<td>Technoparc - 1 allée du Moulin Berger,</td>
</tr>
<tr>
<td>Vaughan, ON L4K 3T3, Canada</td>
<td>69130 Ecully, France</td>
</tr>
<tr>
<td></td>
<td>Tel : +33(0)4-72-53-03-03</td>
</tr>
<tr>
<td></td>
<td>Fax : +33(0)4-72-53-03-13</td>
</tr>
<tr>
<td></td>
<td>Website : www.vivax-metrotech.com</td>
</tr>
<tr>
<td></td>
<td>Email : salesfrance@vxmt.com</td>
</tr>
</tbody>
</table>

Central/South America and the Caribbean	**United Kingdom**
--	**Vivax-Metrotech Ltd.**
Ventas para América Latina	Unit 18-19, Woodside Road,
3251 Olcott Street,	South Marston Industrial Estate,
Santa Clara, CA 95054, USA	Swindon, SN3 4WA, UK
Website : www.vivax-metrotech.com	Free Phone: 0800-0281811
T/Free : 800-624-6210	Website : www.vivax-metrotech.com
Tel : +1-408-454-7159	Email : salesUK@vxmt.com
Fax : +1-408-743-5597	
Email : VentasparaAmericaLatina@vxmt.com	
3.1 VM-480B
The Vivax-Metrotech Model VM-480B Pipe and Cable Locator is a versatile locating instrument designed for locating and tracing the path of pipes and cables; detecting energizing 60Hz power lines; and when mounted on an optional carrying handle, conducting blind searches, ground surveys, and locating underground metal masses. Depth measurement is accomplished using the triangulation method.

The VM-480B is of split-box design, half being the transmitter and half being the receiver.

The transmitter generates a signal which is applied onto the pipe or cable to be traced - referred to from now on as the "conductor". The signal travels along the conductor, becoming weaker as it gets farther away from the transmitter. The distance that the signal travels before it becomes too weak to be detected depends on the method of connection, the type of conductor, the surrounding soil, and the depth of the conductor.

When you position the receiver over the targeted conductor, it will detect the signal from the conductor, enabling the operator to trace the path of the pipe or cable. The signal strength reading on the meter and the audio tone directs the operator to the path of the conductor.

As with all electromagnetic locating systems, this unit is designed to locate metallic conductors only. The word "conductor, pipe, or cable" refers to a metallic conductor throughout this manual.
3.2 Controls and Indicators of the Model VM-480B Transmitter

VM-480B Transmitter: Controls and Indicators

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | POWER INDICATOR LAMP
Indicates power is on. Blinks steadily if battery power is good, will slow down according to power left in batteries. When it stops blinking, replace the batteries. |
| 2 | COND/AUX OUTPUT JACK
Insert either the direct connect cable or the 4820 Metroclamp cable into this jack. The transmitter’s internal antenna is automatically disconnected when a plug is inserted into this jack. |
| 3 | BATTERY ACCESS |
| 4 | PUSH/PULL POWER SWITCH
Pull this switch to turn the transmitter on. Power Indicator lamp will blink. |
3.3 Controls and Indicators of the VM-480B Receiver

VM-480B Receiver: Controls and Indicators

<table>
<thead>
<tr>
<th></th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FIELD STRENGTH METER
The meter indicates the strength of the signal being received by the receiver. The reading will vary according to how close the receiver is to the conductor. The receiver displays the highest reading when it is directly over the target conductor.**
BATTERY TEST INDICATOR
When the receiver is turned ON, the needle should move into the BATT test area of the meter. If it does not, the batteries need to be replaced.</td>
</tr>
<tr>
<td>2</td>
<td>CARRYING HANDLE THREADED BUSHINGS
Connection point for Carrying Handle screws.</td>
</tr>
<tr>
<td>3</td>
<td>SPEAKER
Emits audio tone which guides operator toward the targeted conductor.</td>
</tr>
<tr>
<td>4</td>
<td>MODE SWITCH
Two operating positions:
Active – Direct Connect, Inductive coupling and inductive
Passive – For tracing energizing 50/60Hz power lines</td>
</tr>
<tr>
<td>5</td>
<td>AUX INPUT Jack
Plug in second 4820 Metroclamp (when using two clamps) into this jack.</td>
</tr>
<tr>
<td>6</td>
<td>BATTERY ACCESS</td>
</tr>
<tr>
<td>7</td>
<td>HEADPHONE JACK
Plug in point for headphones.</td>
</tr>
<tr>
<td>8</td>
<td>DEPTH ANGLE BUBBLE
Position the bubble in the indicated area to estimate the depth.</td>
</tr>
<tr>
<td>9</td>
<td>RANGE KNOB
Changes the ratio of the signal amplification.</td>
</tr>
<tr>
<td>10</td>
<td>SENSITIVITY KNOB
Controls the signal gain. Set as low as possible to avoid receiving signal from conductors other than your target conductor.</td>
</tr>
</tbody>
</table>
Checkout Procedure

To insure proper operation of the VM-480B Pipe and Cable Locator, use the checkout procedure at the following times:

- Upon receiving the equipment
- Before each job, preferably before you leave for the site
- If problems arise during a locate

1. Turn the transmitter on by pulling the PUSH/PULL POWER SWITCH and place the transmitter on the ground. If the batteries are working, the battery lamp will blink.
2. Turn the receiver ON (if the batteries are working, the meter will move to the BATT section of the meter) and set to the Active/Norm Mode.
3. Set the SENSITIVITY knob to the “SET” line.
4. Hold the receiver in a position parallel to the transmitter. The meter needle should move all the way to the right side of the meter, and the audio tone should be loud.
5. Move away from the transmitter, holding the receiver in the same parallel position. At 10-20ft the signal level should start to drop - the meter needle will move to the left and the audio tone will begin to fade.
6. Turn the receiver perpendicular to the transmitter - both the meter reading and the audio tone should suddenly drop.

If either the receiver or the transmitter does not respond to the above tests, check the batteries. Refer to Section 7, Maintenance for instructions.

4.1 To Check the 50/60Hz Power Mode

1. Test the receiver only (the transmitter is not required for passive locating). Stand under an indoor AC powered light fixture.
2. Set the range to “HIGH” and the sensitivity to the 12 o’clock position.
3. Hold the receiver in a vertical position and raise the receiver upward toward the light fixture. The meter reading and audio tone should increase as the receiver gets closer to the light fixture.

If either the receiver or the transmitter does not respond to the above tests, check the batteries. Refer to Section 7, Maintenance for instructions.

NOTE
The VM-480B receiver features a 30-minute automatic shut-off to prevent the receiver from being accidentally left on. A beep will sound to alert the operator that the receiver is about to shut off. Reactivate the receiver by turning the RANGE KNOB back to “OFF” and then to “NORM” or “HIGH”.
Follow the checkout procedure described in Section 4 before operating the equipment.

To operate the VM-480B pipe and cable locator, use the transmitter to apply the signal to the conductor, and use the VM-480B receiver to trace the signal coming off the conductor.

For a successful locate you must be sure that you have the best possible connection to the target conductor and that the conductor is well grounded. If there is a break in the circuit path, very little transmitter signal will reach the receiver. Look for disconnected leads, circuit breakers, open switches, insulators, etc.

Power lines and telephone sheaths are assumed to be grounded. If you are tracing a conductor with an exposed insulated joint, such as a gas pipe with a gas meter, use the jumper cable to bypass the meter (insulator). Attach each end of the jumper cable to opposite sides of the insulator.

To trace non-metallic pipe (sewer line) or duct send the signal through the conductor by inserting a snake or fish tape into the pipe and connecting the Direct Connect Cable from the transmitter to one end of it.

WARNING

Never make a direct connection to a live power cable. Use a voltmeter to check for active electrical power. Always make sure the power to a cable is turned off before you make a direct connection to it. (Live secondary power can be located safely using an Inductive clamp.)

5.1 To Start Locating

There are three different methods of applying the signal to the conductor with the transmitter - Direct Connection, Inductive Coupling and Inductive. A description of each method and use instructions follow below.

In addition to three different methods of inducing the signal onto the conductor, there are two methods - PEAK and NULL by which to locate your conductor.

The PEAK method is generally used to follow the path or direction of a line. It is the preferred method for general locating because the sensitivity or gain can be kept to a minimum which prevents bleed-off onto nearby lines.
5 Operation

The NULL method is used for more accurate locating of the centerline of a conductor. You would want to get an accurate locate of a conductor centerline before determining the depth of a conductor.

PEAK and NULL procedures are described below.

5.2 **Direct (Conductive) Connection**

This is the preferred mode of operation because the transmitter is connected directly to a metallic part of the conductor (hydrant, meter, riser, valves, sheath, tracer wire) allowing a strong maximum signal to reach the conductor. In this operating mode the receiver can be closer to the transmitter, and adjacent buried conductor interference is reduced.

5.2.1 **Transmitter**

1. With the transmitter OFF, plug the Direct Connect Cable into the jack labeled COND/AUX OUTPUT on the VM-480B transmitter.
2. Attach the RED lead of the Direct Connect Cable to an electrically clean metallic part of the targeted conductor.
3. Extend the BLACK lead of the Direct Connect Cable as far as possible from the conductor, at a right angle. Look for a convenient existing ground, such as a metal street sign. Be careful not to get close to or cross any adjacent buried conductors. If no existing ground is available, use the ground spike as far into the Ground as possible, and attach the BLACK lead. If the ground surface is too hard, place the ground plate on the ground and attach the BLACK lead. To improve conductivity, put water and/or a weight on it.

4. Pull the transmitter POWER Switch ON. Set the MODE switch to POWER TEST. The POWER TEST LAMP should blink steadily, indicating a charged battery.
5. Set the receiver MODE switch to “Active”.
6. Set the receiver SENSITIVITY KNOB to a low setting on the left of the dial, adjusting as needed for good signal reception. As you move farther away from the transmitter, you will need to increase the sensitivity. It is important to tune the sensitivity as low as possible in order to sharpen the reception and reduce signal bleed-off onto adjacent conductors.
7. Set the receiver RANGE knob to “NORM”, adjusting to “HIGH” when necessary.
8. When starting a locate, you need to “prelocate” the targeted conductor by using the broad range PEAK method first to find the general location of the line. Then hone in on the exact location of the conductor with the precision NULL method.

5.2.2 **Peak Method**

The PEAK method gives a maximum (loud tone) signal. Hold the receiver by the handle in a vertical position and move it from side to side. The audio tone and field strength will increase as you approach the location of the conductor.

5.2.3 **Null Method**

To pinpoint the location of the conductor use the NULL method by holding the VM-480B receiver in a flat, horizontal position. The audio tone will increase and then go silent at the exact location of the conductor.
WARNING
Do not hold the receiver at an angle – Incorrect information will result!

1. To determine the direction of the conductor, stop and vertically rotate the receiver to the left and right. The highest signal strength reading indicates the direction of the conductor. Continue to trace the conductor in the direction indicated by the indicators on the receiver. If the signal strength drops abruptly, the conductor may have changed direction or stopped.

2. When you have pinpointed the conductor's location, mark it as required. See Section 5.6 for APWA color markings.

3. When you have finished the locating, turn the transmitter and receiver off and disconnect the accessories.

5.3 Inductive Coupling with the 4820 Metroclamp
Use this method if Direct Connection is not possible, but you can position a Metroclamp around the conductor you want to trace. The Inductive Coupling method uses the 4820 Metroclamp to induce a signal onto the conductor when direct metallic contact is not possible. The clamp is placed around the target conductor. The transmitter then induces a signal through the clamp.

When using the Metroclamp the conductor must be well grounded, i.e. with sheaths and neutrals. When tracing lines that have insulators, the insulators should be bypassed, using the supplied jumper cable.

1. With the transmitter OFF, plug the 4820 Metroclamp cable into the COND/AUX jack on the VM-480B transmitter.

2. Place the Metroclamp around the conductor, below the electrical ground. Make sure that the clamp jaws are completely closed.

3. Continue your locating by following steps 4 through 11, Section 5.2 Direct Connection.

5.4 Inductive (Indirect Method)
If you cannot make a direct connection onto the conductor, or use the Metroclamp, use the antenna that is mounted on the transmitter case to induce signal onto the conductor.
This is the least preferred method of inducing signal onto a conductor because the signal is broadcast through the soil and air and can be picked up by other conductors in the area. In this mode the signal radiates from the antenna mounted on the transmitter case and couples to the conductor by electromagnetic induction.

If no direct connect cable or Metroclamp is attached to the DIRECT/4820 CLAMP jack, the transmitter automatically broadcasts the signal through the antenna mounted on the transmitter case.

No ground connection is needed when a signal is induced onto the target conductor.

WARNING

Do not operate the transmitter in the Inductive Mode while it is resting on or near a metal surface or large metal object. Incorrect test readings and damage to the transmitter may result.

1. Position the transmitter over the buried conductor making sure that the transmitter is parallel or in line directly over the targeted conductor.

2. When using the Inductive method, the receiver must be 35-50 ft. away from the transmitter depending on how high the sensitivity is set. The higher the sensitivity, the farther from the transmitter the receiver must be to avoid picking up the transmitter signal traveling through the air.

3. Continue your locate by following steps 4 through 11, Section 5.2 Direct Connection.

5.5 VM-480B 50/60Hz Power Line Locating

When locating a power line the VM-480B transmitter is not required as you are locating the power line by tracking the path of the 50/60 current coming off the line (the line must be loaded).

This method gives a maximum (loud tone) signal. The VM-480B receiver is held in a vertical position at right angles to the line for maximum signal. (Note the logical path of the line from the source).

You will notice a different audio tone when using the 50/60Hz mode, this is normal.

50/60 Power Line Locating Operation:

1. Move the VM-480B receiver a few feet away from where you want to start searching.

2. Turn the receiver MODE Switch to “Passive 50/60Hz”.

3. Hold the receiver in a vertical position. Then adjust the SENSITIVITY knob to bring the needle within the “SET” zone. If the meter does not adjust to “SET”, turn the SENSITIVITY knob all the way to the right (clockwise) and/or move closer to the conductor. If you still cannot adjust to the “SET” position, switch the RANGE knob to “HIGH”; and then attempt to adjust the SENSITIVITY to “SET”. (If no current is present you will be unable to adjust to “SET”).

4. Hold the receiver in an upright, vertical position with the face of the receiver facing you, and at right angles to the targeted conductor.
5. Move the receiver from side to side over the targeted conductor location until you obtain the maximum PEAK response. For better signal reception, hold the receiver close to the ground. As you move closer to the targeted conductor, the speaker tone will gradually get louder. The loudest tone will indicate you are over the conductor in the PEAK mode.

6. If the needle is at or close to the end of the meter scale, adjust the SENSITIVITY knob to bring the needle back to the middle of the meter. (Decreasing the SENSITIVITY will give a sharper receiver response as you move closer to the target conductor.) Then move to a new position and note the meter response. The meter reading will increase if the signal gets stronger (closer to the conductor), or decrease if the signal gets weaker (further from the conductor).

7. Keep adjusting the SENSITIVITY knob and the position of the receiver until you find a place that gives a maximum reading. (This will occur when the receiver forms an angle of 90 degrees with the target conductor.)

5.6 **Estimating the Depth of a Conductor**

Follow this procedure to estimate the depth of a buried conductor:

1. Using the NULL method, find the exact location of the conductor. At a minimum distance of 35 feet from the transmitter (to prevent air coupling between the transmitter and receiver), locate and mark the conductor.

2. Then, still in the same mode of operation (NULL), tilt the receiver to 45 degrees (aligning the bubble), and move off to the side of the conductor. See below graphic.

3. When you "locate" the conductor a second time, with the receiver at a 45 degree angle, mark the spot on the ground. The distance between this second spot and the true location of the conductor (A), less the distance between the center of the receiver and the ground (B), is equal to the depth of the conductor (C). See graphic above.

4. Measurement accuracy is affected by the ratio of the conductor diameter compared to how deep the conductor is buried. (The larger the pipe the less accurate the depth measurement.) Depth measurements are also affected by soil conditions, overhead lines, and adjacent conductors.
5.7 Using the Carrying Handle for Blind Searching, Ground Surveys, and Metal Mass Location

To conduct a blind search, a ground survey, or to locate an underground metal mass, the VM-480B transmitter and receiver must be mounted on a carrying handle (Part# 200766). The handle positions the receiver and the transmitter in correct relation to each other.

5.7.1 Mounting the VM-480B Transmitter and Receiver to the Carrying Handle

1. Assemble the Carrying Handle as shown below. Do not insert the end pieces beyond the stop pins. Secure the screws on the center section.

2. Mount the VM-480B transmitter onto the Carrying Handle by placing the single screw-end of the handle into the transmitter and securing it to the transmitter with the handle screw. See below graphic, Step 1.

3. Place the mounted transmitter on the ground as shown and attach the VM-480B receiver to the handle, screwing the two handle screws into the two threaded bushings on the receiver. The receiver should be perpendicular to the transmitter as shown below, Step 2.

4. Pull the transmitter POWER switch on.

5. Set the receiver RANGE switch to "Norm" (the Receiver will turn on).

6. Set the receiver SENSITIVITY Switch to "11 o'clock position."
7. Set the receiver MODE Switch to "Active".
8. Because the receiver is operating close to the transmitter, the receiver will detect the transmitter output by air coupling and emit a tone. In order to cancel the air coupling the receiver must be positioned exactly perpendicular to the transmitter: The operator must be at least 15 feet from all metal objects, pipes, fences, cars, etc.

Hold the instrument at arms length, parallel to the ground with the receiver facing up as shown in below graphic. First turn the topmost knob clockwise until full tone is indicated and the spring is compressed. Then turn this same knob in a counterclockwise direction until you have a zero audible and visual signal. Continue to turn through this "no signal" area until a slight signal is heard and the visual indicator reads within the "SET" area. Leave the topmost knob at that position. If you are unable to find a "no signal" area, lower the sensitivity.

5.7.2 Locating with the Handle-Mounted VM-480B

1. Holding the handle-mounted VM-480B with the receiver face up and the transmitter on the back end, start traversing the area you need to blind search.
2. As you cross a conductor at right angles - the point of maximum audio and visual signal, make a mark on the ground.
3. Continue to walk in the same direction until "no signal" is registered. At this point make a 180 degree turn and walk back over the same path until the maximum signal registers on the meter and audio tone again. Make a second mark on the ground at this point. The true location of the conductor is midway between the two marks.
5.7.3 **Blind Search, Metal Mass Location, Ground Survey with the Carrying Handle**
A "blind search" is a search for the location of a conductor with an unknown source or ending. The VM-480B must be operated in the Inductive Mode using a systematic grid approach. Looking for a "metal mass", such as a manhole cover or steel drum is the same as a "blind search" with the exception that the search paths need to be closer together so as not to miss the metal object. A "ground survey" is a process by which an operator can locate all the underground conductors within a particular area.

5.8 **Conductor Identification Using a Second 4820 Metroclamp**
When exposed multiple conductors are present, for example in conduits, ducts, or pedestals, use the method described below to identify a specific conductor.

1. Apply transmitter signal to the target conductor using a 4820 Metroclamp, as described in Section 4.2.
2. Plug a second Metroclamp cable into the jack marked AUX INPUT on the receiver.
3. Set the RANGE switch on the receiver to "Norm". Set the MODE switch to "Active".
4. Place the Metroclamp around each conductor in succession, making sure that the jaws are fully closed. The conductor with the highest field strength indication is the target conductor. See below graphic.

NOTE
This method will work only if there is no cross bonding on the length of the conductor between the conductor and the receiver.

![Position of Metroclamps When Using Two](image)
5.9 **Marking the Conductor**

The following color markings have been established by the American Public Works Association (APWA):

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power lines, cables, or conduits</td>
<td>Red</td>
</tr>
<tr>
<td>Communication lines, cables, conduits, CATV</td>
<td>Orange</td>
</tr>
<tr>
<td>Gas, oil, petroleum, or other gaseous materials</td>
<td>Yellow</td>
</tr>
<tr>
<td>Storm and sanitary sewers, drain lines</td>
<td>Green</td>
</tr>
<tr>
<td>Water, irrigation, or slurry lines</td>
<td>Blue</td>
</tr>
</tbody>
</table>

NOTE

If you have any questions regarding marking requirements or procedures, please call your local One Call Center.
Many variables affect the process of locating a pipe or cable. The following information gives guidelines for various problem situations.

6.1 Soil Conditions

Generally, the effect of soil types on line tracing is as follows:

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Effect on Line Tracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist, compact</td>
<td>Ideal</td>
</tr>
<tr>
<td>Dry, sandy, or rocky</td>
<td>Little or no moisture content creates a poor tracing environment</td>
</tr>
<tr>
<td>Alkaline, high iron content</td>
<td>Poor tracing environment</td>
</tr>
</tbody>
</table>

6.2 Field Strength of the Signal

When the signal is applied to the conductor using any of the three "Active" methods covered in Section 5.2 – 5.5, an electromagnetic field is created around the conductor. The receiver measures the strength of this field, displaying it on the field strength meter.

The field strength decreases as you move away from the target conductor and as you move farther away from the transmitter (in the "Active" mode). For optimum tracing accuracy, the field strength should read at least 5 on the meter at maximum gain.

6.3 Verifying Versus Tracing

Verifying means to confirm that a conductor if present, and tracing means to map out its route along the ground. Besides its use for locating a cable, the VM-480B’s 50/60Hz power line locating mode is also helpful for determining the presence of energizing power lines and other conductors. The active range using the transmitter generally produces the best accuracy when tracing.

6.4 Adjacent Conductors

When the meter reading drops off more on one side of the conductor than it does on the other, the receiver may be picking up interference from an adjacent or parallel conductor. Adjust the sensitivity to compare the signal strength of the conductors. In most cases, the conductor with the stronger signal is the target conductor. If you are using the Active Mode, confirm the exact location of the adjacent conductors. Place your ground lead so that it does not cross over any adjacent conductors, is perpendicular to, but as far away from your target conductor as possible.

Note evidence of other underground utilities in the area, such as transformers, pedestals, hydrants, meters, etc. which indicate the presence of other underground conductors.
6.5 **Deep Conductor**
Signals picked up by the receiver from deep buried pipes are weaker and not as directionally distinct as those from pipes closer to the surface. In addition, the meter reading will only change by small increments in relation to moving the receiver antenna.

Using the Inductive (Indirect) Method of coupling signal to the conductor may be difficult if the target conductor is buried four feet or more. For best results, use the Direct (Conductive) Connection method of coupling signal to the targeted conductor.

6.6 **Tracing Long Runs**
Signals picked up by the receiver get weaker as you move further and further away from the transmitter coupling point, especially on long pipe runs. To get a stronger signal, move the transmitter coupling point closer to the receiver. If forced to use the Inductive Indirect mode, your tracing job will be easier if an assistant follows behind with the transmitter as you trace with the receiver.

6.7 **Locating a Service Lateral - Active Range/Inductive Mode**
After you have traced the main, you may want to go back and locate the service laterals off the main. Service lateral traces are easiest to conduct in the Inductive Mode. Two operators are required for this procedure - Operator 1 remains stationary holding the receiver as if to trace over and parallel to the main. Operator 2, carrying the transmitter, holding it perpendicular to the main line, and maintaining a minimum of 100 ft. between himself and the receiver, walks parallel but 5 feet from the main on the side he expects to find the service laterals as shown below. The meter reading on the receiver will increase as Operator 2 crosses over the service lateral with the transmitter. Each time the meter reading increases Operator 1 signals Operator 2 and he/she marks the lateral locations on the ground.
6.8 **Locating a Bend or Dead End**

While tracing a line, you may find that the meter reading drops off suddenly, and that there is no distinct reading when the receiver antenna is moved left or right. Stand in place and continue sweeping the antenna from side to side but at the same time slowly pivot your body.

If you find a pivot angle at which the meter reading picks up again, it means you've located a bend and can resume tracing in the new direction.

If you pivot all the way around (360 degrees), without getting any noticeable meter reading, it means you've reached a dead end.

6.9 **Valves, Manhole Covers, Tees and Risers**

If the meter reading suddenly increases and then falls back while tracing a pipe you have probably passed over a buried valve, manhole cover, tee, or riser.

6.10 **Common Bonded Conductors**

Telephone, power, and CATV sometimes use a common ground bond. If other conductors are connected to your target conductor, putting a signal on the target can cause all the conductors to carry the same signal, making it difficult to identify the target conductor.

To verify that you are tracing the targeted conductor, note the field strength at a known location of the conductor. As you trace, any change in field strength should be gradual. If either reading changes abruptly you are probably no longer over your targeted conductor.

6.11 **Congested Areas**

If you suspect that coupling from adjacent conductors is causing interference in the signal picked up by the receiver try increasing the strength of the signal received from the transmitter and decreasing the strength of signal from the interfering conductors by:

1. Changing to a different transmitter coupling point or coupling mode.
2. Improving the grounding connection or moving the grounding point.
3. Determine the location of the adjacent conductors. Then check to be sure that neither the direct connect cable or the ground cable cross over any of the adjacent conductors. Reposition them if necessary.
4. If you are using the Inductive (Indirect) mode, you may be able to decrease the amount of interfering signal by changing the orientation of the transmitter to the targeted conductor. Determine the location of the interfering conductor.

6.12 **Pipes with Insulated Junctions**

The high radio frequency signal of the VM-480B Pipe and Cable Locator will jump pipe insulators, however, the signal will proportionately decrease each time it crosses an insulator. When possible, such as when tracing a pipe with a meter, bypass the meter (insulator) by using a jumper cable. Attach each end of the jumper cable on opposite sides of the insulator.
6.13 Metroclamp Ground Requirements
If you are using the Metroclamp around a cable, both ends of the target conductor must be
grounded to insure sufficient field strength. Power lines and telephone sheaths are assumed to
be grounded.

6.14 Grounding Safety
If you use the direct connect method, be sure that there is no power flowing through the target
conductor. If you use the Metroclamp on energized lines, follow established safety procedures.

6.15 Distribution Systems
To locate short gas services on a gas distribution system, you should temporarily ground the end
of the service. This can be accomplished by temporarily connecting a jumper cable to a ground
spike at the end of a service, where the pipe or tracer wire comes out of the earth. Be sure to
remove the ground connection after completing the locating so as not to defeat the cathodic
protection system.
The only routine maintenance required for the Model VM-480B equipment and accessories is to test and replace, if necessary, the batteries in the transmitter and the receiver. Both possess battery test features, making it easy to check the condition of the batteries at any time.

We recommend checking the transmitter and receiver batteries before each use, preferably before leaving for the job site.

7.1 Checking and Replacing the VM-480B Transmitter and Receiver Batteries

Check and replace the transmitter and receiver batteries as follows:

1. Have ready 6 C Cell batteries.
2. To test the transmitter batteries, pull the power switch on. The LED will blink steadily if the batteries are in good condition. It will begin to slow down as the batteries lose power. If it does not blink at all, the batteries need to be replaced.
3. To test the receiver batteries, turn the Range Knob to "NORM". The needle on the field strength indicator should move into the BATT test area. If it does not, the batteries need to be replaced.
4. To replace batteries in either the transmitter or the receiver, open the BATTERY ACCESS door on the front of the unit. Extract the battery holder and replace batteries, positioning according to the indications shown inside the battery holder.
5. Close the battery access panel, ensuring that there are no wires caught between the receiver body and the access panel. Make sure the latch is securely fastened.

7.2 Basic Preventive Maintenance

The Model VM-480B is designed for rugged outdoor use, but rough handling should be avoided. Keep the equipment dry, clean, and free of grit.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Locate</td>
<td>A locate where a transmitter is used to apply a signal to a buried pipe or cable, the position of which is then located by a receiver tuned to the same frequency.</td>
</tr>
<tr>
<td>Active Signal</td>
<td>A signal applied by the locator transmitter to a buried line. Typical this is a very precise frequency.</td>
</tr>
<tr>
<td>Attenuation</td>
<td>The reduction of an electromagnetic signal from a pipe or cable.</td>
</tr>
<tr>
<td>Clamp (or Coupler)</td>
<td>An accessory used to apply the transmitter signal to an insulated line, removing the need to connect the transmitter signal directly to a conductor or cable sheath.</td>
</tr>
<tr>
<td>Coupling</td>
<td>The act of signals transferring to lines to which they were not originally applied. Coupling can be “direct” where the target line has an electrical connection to another line, or “induced” where the signal radiates from the target line to another line or lines.</td>
</tr>
<tr>
<td>Display</td>
<td>The information visually available on the dot matrix display.</td>
</tr>
<tr>
<td>Line</td>
<td>A generic term for any buried pipe or cable.</td>
</tr>
<tr>
<td>Null</td>
<td>A minimum response to a buried line.</td>
</tr>
<tr>
<td>Passive Locate</td>
<td>A locate where the receiver searches for a wide range of signals that radiate from buried pipes or cables. These signals come from a variety of sources in the environment and couple to the buried (& overhead) lines. Typical examples 50/60Hz and LF/VLF radio.</td>
</tr>
<tr>
<td>Passive signals</td>
<td>A wide range of signals that radiate from buried pipes or cables. These signals come from a variety of sources in the environment and couple to the buried (& overhead) lines. Typical examples 50/60Hz and LF/VLF radio.</td>
</tr>
<tr>
<td>Peak</td>
<td>A maximum response to a buried line.</td>
</tr>
<tr>
<td>Pinpoint</td>
<td>Using a receiver to identify the exact position of a buried line.</td>
</tr>
</tbody>
</table>
Response The indication that the receiver gives which is caused by the signals it is receiving. This can be visual, audio or both. Typically it is displayed on the locators dot matrix display and audibly from a loudspeaker in the receiver housing.

Search (sweep) This describes the act of looking for a buried line within a given area.

Sonde A small transmitting coil which may be built into a product such as a sewer camera or packaged as a small self contained battery powered transmitter. A receiver tuned to the same frequency can locate the position of the Sonde and hence whatever it is attached to or in. Frequently used for locating sewer cameras, and the non metallic pipes.

Target Line The buried pipe or cable to be located.

Trace Using a locator to following the path of a buried line.

Illustrations used in the preparation of this manual will inevitably show some resemblance to similar illustrations from other Manufacturers-some manufacturers have given permission for the use of their graphics (Vivax-Metrotech & Seba) is given credit for these uses. This statement is intended to attribute such credit.

Disclaimer: Product and accessory specification and availability information is subject to change without prior notice.